1,052 research outputs found

    Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    Full text link
    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal (DSM) and a symmetry-preserving band insulator (BI). The electronic dispersion at this critical point is anisotropic (Ek=±v2kx2+b2ky2nE_{\mathbf k}=\pm \sqrt{v^2 k^2_x + b^2 k^{2n}_y} with n=2n=2), which results in unconventional scaling of physical observables. Due to the vanishing density of states (ϱ(E)∼∣E∣1/n\varrho(E) \sim |E|^{1/n}), this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions the direct DSM-BI transition can either (i)(i) become a first-order transition, or (ii)(ii) get avoided by an intervening broken-symmetry phase (BSP). We perform a renormalization group analysis by perturbing away from the one-dimensional limit with the small parameter ϵ=1/n\epsilon = 1/n, augmented with a 1/n1/n expansion (parametrically suppressing quantum fluctuations in higher dimension). We identify charge density wave (CDW), antiferromagnet (AFM) and singlet s-wave superconductor as the three dominant candidates for the BSP. The onset of any such order at strong coupling (∼ϵ)(\sim \epsilon) takes place through a continuous quantum phase transition across multicritical point. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our results can be germane for a uniaxially strained honeycomb lattice or organic compound α\alpha-(BEDT-TTF)2I3_2\text{I}_3.Comment: Published version: 33 Pages, 13 Figures, 7 Tables (Shortened abstract due to character limit for arXiv submission; see main text

    Spectroscopic probes of isolated nonequilibrium quantum matter: Quantum quenches, Floquet states, and distribution functions

    Full text link
    We investigate radio-frequency (rf) spectroscopy, metal-to-superconductor tunneling, and ARPES as probes of isolated out-of-equilibrium quantum systems, and examine the crucial role played by the nonequilibrium distribution function. As an example, we focus on the induced topological time-periodic (Floquet) phase in a 2D p+ipp+ip superfluid, following an instantaneous quench of the coupling strength. The post-quench Cooper pairs occupy a linear combination of "ground" and "excited" Floquet states, with coefficients determined by the distribution function. While the Floquet bandstructure exhibits a single avoided crossing relative to the equilibrium case, the distribution function shows a population inversion of the Floquet bands at low energies. For a realization in ultracold atoms, these two features compensate, producing a bulk average rf signal that is well-captured by a quasi-equilibrium approximation. In particular, the rf spectrum shows a robust gap. The single crossing occurs because the quench-induced Floquet phase belongs to a particular class of soliton dynamics for the BCS equation. The population inversion is a consequence of this, and ensures the conservation of the pseudospin winding number. As a comparison, we compute the rf signal when only the lower Floquet band is occupied; in this case, the gap disappears for strong quenches. The tunneling signal in a solid state realization is ignorant of the distribution function, and can show wildly different behaviors. We also examine rf, tunneling, and ARPES for weak quenches, such that the resulting topological steady-state is characterized by a constant nonequilibrium order parameter. In a system with a boundary, tunneling reveals the Majorana edge states. However, the local rf signal due to the edge states is suppressed by a factor of the inverse system size, and is spatially deconfined throughout the bulk of the sample.Comment: 22 pages, 15 figures. v2: Added calculated ARPES spectr

    Interaction-mediated surface state instability in disordered three-dimensional topological superconductors with spin SU(2) symmetry

    Get PDF
    We show that arbitrarily weak interparticle interactions destabilize the surface states of 3D topological superconductors with spin SU(2) invariance (symmetry class CI), in the presence of non-magnetic disorder. The conduit for the instability is disorder-induced wavefunction multifractality. We argue that time-reversal symmetry breaks spontaneously at the surface, so that topologically-protected states do not exist for this class. The interaction-stabilized surface phase is expected to exhibit ferromagnetic order, or to reside in an insulating plateau of the spin quantum Hall effect.Comment: v2: 5+3 pages, 1 figure; expanded introduction, added background on topological superconductors and multifractality, technical details relegated to sup info (published version

    Chalker scaling, level repulsion, and conformal invariance in critically delocalized quantum matter: Disordered topological superconductors and artificial graphene

    Get PDF
    We numerically investigate critically delocalized wavefunctions in models of 2D Dirac fermions, subject to vector potential disorder. These describe the surface states of 3D topological superconductors, and can also be realized through long-range correlated bond randomness in artificial materials like molecular graphene. A frozen regime can occur for strong disorder in these systems, wherein a single wavefunction presents a few localized peaks separated by macroscopic distances. Despite this rarefied spatial structure, we find robust correlations between eigenstates at different energies, at both weak and strong disorder. The associated level statistics are always approximately Wigner-Dyson. The system shows generalized Chalker (quantum critical) scaling, even when individual states are quasilocalized in space. We confirm analytical predictions for the density of states and multifractal spectra. For a single Dirac valley, we establish that finite energy states show universal multifractal spectra consistent with the integer quantum Hall plateau transition. A single Dirac fermion at finite energy can therefore behave as a Quantum Hall critical metal. For the case of two valleys and non-abelian disorder, we verify predictions of conformal field theory. Our results for the non-abelian case imply that both delocalization and conformal invariance are topologically-protected for multivalley topological superconductor surface states.Comment: 17 pages, 15 figures, published versio

    Transport coefficients of graphene: Interplay of impurity scattering, Coulomb interaction, and optical phonons

    Get PDF
    We study the electric and thermal transport of the Dirac carriers in monolayer graphene using the Boltzmann-equation approach. Motivated by recent thermopower measurements [F. Ghahari, H.-Y.~Xie, T. Taniguchi, K. Watanabe, M.~S.~Foster, and P.~Kim, Phys.\ Rev.\ Lett.\ {\bf 116}, 136802 (2016)], we consider the effects of quenched disorder, Coulomb interactions, and electron--optical-phonon scattering. Via an unbiased numerical solution to the Boltzmann equation we calculate the electrical conductivity, thermopower, and electronic component of the thermal conductivity, and discuss the validity of Mott's formula and of the Wiedemann-Franz law. An analytical solution for the disorder-only case shows that screened Coulomb impurity scattering, although elastic, violates the Wiedemann-Franz law even at low temperature. For the combination of carrier-carrier Coulomb and short-ranged impurity scattering, we observe the crossover from the interaction-limited (hydrodynamic) regime to the disorder-limited (Fermi-liquid) regime. In the former, the thermopower and the thermal conductivity follow the results anticipated by the relativistic hydrodynamic theory. On the other hand, we find that optical phonons become nonnegligible at relatively low temperatures and that the induced electron thermopower violates Mott's formula. Combining all of these scattering mechanisms, we obtain the thermopower that quantitatively coincides with the experimental data.Comment: 20 pages, 9 figure

    Response theory of the ergodic many-body delocalized phase: Keldysh Finkel'stein sigma models and the 10-fold way

    Full text link
    We derive the finite temperature Keldysh response theory for interacting fermions in the presence of quenched disorder, as applicable to any of the 10 Altland-Zirnbauer classes in an Anderson delocalized phase with at least a U(1) continuous symmetry. In this formulation of the interacting Finkel'stein nonlinear sigma model, the statistics of one-body wave functions are encoded by the constrained matrix field, while physical correlations follow from the hydrodynamic density or spin response field, which decouples the interactions. Integrating out the matrix field first, we obtain weak (anti)localization and Altshuler-Aronov quantum conductance corrections from the hydrodynamic response function. This procedure automatically incorporates the correct infrared physics, and in particular gives the Altshuler-Aronov-Khmelnitsky (AAK) equations for dephasing of weak (anti)localization due to electron-electron collisions. We explicate the method by deriving known quantum corrections in two dimensions for the symplectic metal class AII, as well as the spin-SU(2) invariant superconductor classes C and CI. We show that conductance corrections due to the special modes at zero energy in nonstandard classes are automatically cut off by temperature, as previously expected, while the Wigner-Dyson class Cooperon modes that persist to all energies are cut by dephasing. We also show that for short-ranged interactions, the standard self-consistent solution for the dephasing rate is equivalent to a diagrammatic summation via the self-consistent Born approximation. This should be compared to the AAK solution for long-ranged Coulomb interactions, which exploits the Markovian noise correlations induced by thermal fluctuations of the electromagnetic field. We discuss prospects for exploring the many-body localization transition from the ergodic side as a dephasing catastrophe in short-range interacting models.Comment: 68 pages, 23 figure

    Surface transport coefficients for three-dimensional topological superconductors

    Full text link
    We argue that surface spin and thermal conductivities of three-dimensional topological superconductors are universal and topologically quantized at low temperature. For a bulk winding number ν\nu, there are ∣ν∣|\nu| "colors" of surface Majorana fermions. Localization corrections to surface transport coefficients vanish due to time-reversal symmetry (TRS). We argue that Altshuler-Aronov interaction corrections vanish because TRS forbids color or spin Friedel oscillations. We confirm this within a perturbative expansion in the interactions, and to lowest order in a large-∣ν∣|\nu| expansion. In both cases, we employ an asymptotically exact treatment of quenched disorder effects that exploits the chiral character unique to two-dimensional, time-reversal-invariant Majorana surface states.Comment: 24 pages, 15 figures. v3: published versio

    Topological protection, disorder, and interactions: Survival at the surface of 3D topological superconductors

    Full text link
    We consider the interplay of disorder and interactions upon the gapless surface states of 3D topological superconductors. The combination of topology and superconducting order inverts the action of time-reversal symmetry, so that extrinsic time-reversal invariant surface perturbations appear only as "pseudomagnetic" fields (abelian and non-abelian vector potentials, which couple to spin and valley currents). The main effect of disorder is to induce multifractal scaling in surface state wavefunctions. These critically delocalized, yet strongly inhomogeneous states renormalize interaction matrix elements relative to the clean system. We compute the enhancement or suppression of interaction scaling dimensions due to the disorder exactly, using conformal field theory. We determine the conditions under which interactions remain irrelevant in the presence of disorder for symmetry classes AIII and DIII. In the limit of large topological winding numbers (many surface valleys), we show that the effective field theory takes the form of a Finkel'stein non-linear sigma model, augmented by the Wess-Zumino-Novikov-Witten term. The sigma model incorporates interaction effects to all orders, and provides a framework for a controlled perturbative expansion; the inverse spin or thermal conductance is the small parameter. For class DIII we show that interactions are always irrelevant, while in class AIII there is a finite window of stability, controlled by the disorder. Outside of this window we identify new interaction-stabilized fixed points.Comment: 27 pages, 10 figures. v2: published versio

    Quench-induced Floquet topological p-wave superfluids

    Get PDF
    Ultracold atomic gases in two dimensions tuned close to a p-wave Feshbach resonance were expected to exhibit topological superfluidity, but these were found to be experimentally unstable. We show that one can induce a topological Floquet superfluid if weakly interacting atoms are brought suddenly close ("quenched") to such a resonance, in the time before the instability kicks in. The resulting superfluid possesses Majorana edge modes, yet differs from a conventional Floquet system as it is not driven externally. Instead, the periodic modulation is self-generated by the dynamics.Comment: 5+5 pages, 2 figure
    • …
    corecore